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Abstract. We present a new conservative Cartesian grid embedded boundary method for the
solution of the incompressible Navier-Stokes equations in a time-dependent domain. It is a Godunov-
projection fractional step scheme in which hyperbolic advection and a variety of implicit and explicit
Helmholtz operations are performed on time-stationary domains. The transfer of data from one fixed
domain to another uses third-order interpolation. The method is second order accurate in L1 and
first order in L∞. The algorithm is verified on flow geometries with prescribed boundary motion.
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1. Introduction. The incompressible Navier-Stokes equations on a time-
dependent domain

∂u

∂t
+ u · ∇u = −∇P + ν∆u(1.1a)

∇ · u = 0(1.1b)

approximate fluid behavior in a range of important applications. Here u(x, t) is the
velocity of the fluid whose density is assumed to be unity. x is the spatial coordinate, t
is time, P is pressure, and ν is the kinematic viscosity. We are particularly concerned
with reaction-diffusion equations in porous media where reactive transport can alter
the subsurface pore structure due to precipitation or dissolution. Other motivating
applications include the dynamics of biological membranes and lipid bilayer analogs,
and modeling rod-climbing and die-swell behavior of certain viscoelastic fluids. In
these examples, the evolution of the fluid domain is coupled to the motion of the fluid.
Prescribed domain motion occurs in pumps, stirred vessels, and other mechanical
systems.

There are two categories of approaches to discretizing moving domains: (i) grid-
ding schemes that conform to the domain boundary, e.g., unstructured grids obeying
Lagrangian dynamics; and (ii) structured, Cartesian grids where the domain influ-
ences the solution through a forcing as in the immersed boundary method [30] or the
immersed interface method [18], or through cut cell methods where the finite volume
quadrature is modified on those Cartesian cells overlain by the domain boundary, oth-
erwise known as embedded boundary methods. Cut cell methods are confronted by a
small-cell stability problem: finite volume discretizations are unstable on cells whose
volume fraction vanishes. Approaches to this problem include cell merging techniques
(Noh’s “blending” [27]), the h-box technique that references a cell of nonvanishing
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size [2], and hybridization – use of a stable but non-conservative quadrature with
subsequent reestablishment of conservation in a neighborhood [3]. Our approach is
an embedded boundary method, with cut-cell stability through hybridization. This
strategy has proven accurate, robust, and scalable in large scale simulations of reactive
transport in fixed irregular domains [33].

Projection methods [7, 6, 8] use the unique Hodge decomposition of a vector
field to determine the divergence-free component, and the gradient of a potential
that can be associated with the pressure gradient. Godunov-projection methods are
fractional step methods that first compute an intermediate velocity with a high-order
Godunov approach, which is made discrete divergence-free by a Hodge projection.
Other approaches can achieve high order without reference to the intermediate state,
for example computation of u · ∇u via an Adams-Bashforth approach. Our approach
is based on the second-order projection method of Bell et al. [1], with a second-order
unsplit Godunov method for the intermediate velocity [10], and using approximate
projections after Lai [16]. For hyperbolic flow problems, high-order Godunov methods
do a superior job of resolving steep gradients. Minion and Brown [26] compare a
number of approaches to solving incompressible Navier-Stokes. Their examples show
that the Godunov-projection approach does a good job of resolving incompressible
Navier-Stokes flows with steep gradients without introducing spurious high-frequency
oscillations created by some other approaches. This is a significant benefit for reacting
flows where steep gradients exist and reaction rates can be sensitive to high-frequency
oscillation.

There have been many recent developments in projection methods for the mov-
ing domain Navier-Stokes problem. Pan et al. [28] use a Godunov-projection method
with multiblock structured ALE (arbitrary Lagrangian-Eulerian) grids. Udaykumar
et al. [39] use an Adams-Bashforth projection approach with finite volume discretiza-
tion. They locate the interface with Lagrangian marker particles, and address the
small cell problem with cell merging. Marella et al. [21] employ a similar method,
with interface information derived from a discrete level set. Tan et al. [36] also use
level sets to represent the interface, and combine the immersed interface method with
an Adams-Bashforth projection method. Liau et al. [19] combine an Adams-Bashforth
projection method with the immersed boundary method. Chiu et al. [4] use the im-
mersed boundary method with a different second-order projection discretization. All
of these methods claim or demonstrate second-order accuracy. Strict conservation is
necessary to accurately capture wave behavior [17], a property essential for combus-
tion and reactive flows. Such conservation is readily obtained with ALE and finite
volume methods but is a very delicate issue for immersed boundary methods [15].

In this work we present a new conservative Godunov-projection method on Carte-
sian grids for the solution of the incompressible Navier-Stokes equations (1.1a) on a
time-dependent domain Ω(t), with boundary conditions

u = s(x, t)(1.2a)

on moving walls, where s is the velocity of the boundary;

u = uin(x, t)(1.2b)

on inflow boundaries; and

n · ∇u = 0(1.2c)
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on outflow boundaries where n is normal to the domain boundary. We represent the
domain boundary as the zero of a distance function level set, and derive all geometric
descriptions at the moving front from the discrete level set. In this work, the boundary
motion is prescribed.

We discretize space in uniform Cartesian cells which we label with index i, an
integer vector in D space dimensions. The center of cell i has spatial coordinate
x = h(i + 1

21) where h is the length of the cell, and 1 is the vector of ones in ZD.
Time is discretized in uniform increments ∆t, and tn = n∆t is the time at step n. uni
denotes the value of fluid velocity u at the center of cell i at time tn, and with ed the

dth unit basis vector, u
n+ 1

2

i+ 1
2ed

denotes the fluid velocity at the half time step tn+ 1
2 and

the center of i’s cell face in direction +d. With this discretization, an outline of the
approach is:

1. Extrapolate uni to Ωn+ 1
2 , the fluid domain at time tn+ 1

2 . For those cells i in

Ωn+ 1
2 \ Ωn (Figures 1.1,1.2), this extrapolation is based on the algorithm proposed

by McCorquodale et al. [24]: three cells, whose centers together with i are collinear
and approximately aligned with the interface normal, define a quadratic interpolation
function determining ui.

2. On Ωn+ 1
2 , use high-order Godunov methods to compute time– and edge–

centered values u
n+ 1

2

i+ 1
2ej

, j = 1, ..., D [10], and make this field discrete divergence-free

with a MAC projection [14].
3. Compute a nonconservative but stable flux difference, a conservative but un-

stable flux difference, and a stable hybrid flux difference for the hyperbolic treatment
of ut = −u · ∇u [3].

4. Modify the hybrid field u · ∇u so that it obeys global conservation, i.e., so
that ut + u · ∇u = 0 is equivalent to the mathematically identical conservation form
ut +∇ · (uu) = 0 in the weak sense.

5. Extrapolate u ·∇u and lagged estimate ∇Pn− 1
2 to Ωn+1. On Ωn+1 solve the

heat equation ut = ν∆u + f with source term f = −∇P − u · ∇u;

ũ = LTGA

(
un, − (∇P )n−

1
2 − (u · ∇u)n+ 1

2

)
(1.3)

where LTGA is a particular discretization of the heat operator defined later by (2.49).
6. Make un+1 discrete divergence free with a cell-centered projection P (to be

defined by (2.6)). The projection computes ∇Pn+ 1
2 on Ωn+1:

u∗ = ũ + ∆t(∇P )n−
1
2(1.4a)

un+1 = P(u∗)(1.4b)

(∇P )n+ 1
2 =

1

∆t
(I−P)(u∗).(1.4c)

In section 2 additional details of the algorithm will be presented, with empha-
sis on those aspects that are new to this work. We will emphasize the algorithm as
implemented on a single grid. The components of this algorithm have been shown
elsewhere to operate on a hierarchy of nested grids, enabling an adaptive mesh ca-
pability. Our implementation includes this capability, and runs in 2D and 3D with
SIMD parallelism. A numerical demonstration of convergence rates is presented in
section 3.

2. Algorithm details. In subsection 2.1 the existence of a Hodge decomposition
for the moving domain problem is described. This discussion justifies the projections
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Fig. 1.1. Newly uncovered cells. Domain boundary δΩn is shown with a dashed curve; Ωn is the
enclosed volume, and domain boundary δΩn+1 is shown with the solid curve. The region Ωn+1 \Ωn

(shaded) contains fluid at tn+1 but not at tn; it is a newly uncovered region. If a cell contains a
newly uncovered region, and also contains fluid at time tn, then the value of the field in Ωn+1 is
copied from the same cell in Ωn. But, if a newly uncovered region does not contain tn values, the
values in the extended domain must be estimated by extrapolation. Such cells are indicated with
check marks.
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Fig. 1.2. Extrapolation to newly uncovered cells. δΩn is shown as a dashed curve, and δΩn+1 is
a solid curve. Symbol X indicates the cell center of a newly uncovered cell. The arrow is aligned with
the vector comprised of values 0 and ±1 that is most nearly parallel the normal to δΩn+1. Points
along that arrow (open circles) are used to construct a quadratic, i.e., third-order, extrapolation
polynomial.

used in outline steps 2 and 6. The implementation of the projection for cell-centered
u has been described in [37] and implementation details related to adaptive meshes
are given by [22, 23].

Next, in §2.2 the high-order Godunov approach to computing edge– and time–

centered values u
n+ 1

2

i+ 1
2ed

, outline step 2, is described.

In subsection 2.3 the treatment of u · ∇u as a hyperbolic update is described.
This includes the stable and conservative forms mentioned in outline step 3, and the
conservation property enforced in outline step 4.
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The moving domain heat problem employed in outline step 5 was first published
by McCorquodale et al. [24]. They demonstrate numerically that on a single domain
Ωn+1 one can discretize the heat problem on time interval [tn, tn+1], using specially
constructed boundary conditions and extrapolated source terms and initial conditions.
In subsection 2.4 we present a theoretical justification for that method.

Finally, in 2.5 we present some details on the construction of geometric terms used
to define the quadratures underlying the solution to Poisson’s equation (projection),
the Helmholtz equation (heat), and the treatment of u · ∇u as a hyperbolic source
term on a moving domain. We use an idea due to Ligocki et al. [20] that derives
geometric information using a hierarchical application of the divergence theorem.
Our implementation is entirely new and differs from theirs by including some relevant
inequality constraints. The specialization of that approach is described in the case
that the primary source of geometric information is a discretized distance function.

2.1. Hodge projection on a moving domain. To implement a projection
method on a moving domain, Trebotich and Colella [11, 37] decompose a vector field
w into three components:

w = v +∇θ︸ ︷︷ ︸
u

+∇φ(2.1a)

∆θ = 0(2.1b)

∇ · v = 0.(2.1c)

In the context of incompressible Navier-Stokes, u is a divergence-free velocity field,
consisting of a vorticity-carrying component v and an incompressible potential flow
∇θ. ∇φ is the gradient of a potential, which can be used to determine ∇P . The
boundary conditions for this decomposition are

1. moving walls:

n · v = 0(2.2a)

n · ∇θ = n · s(2.2b)

n · ∇φ = n · (w − s);(2.2c)

2. inflow boundaries:

v = 0(2.3a)

n · ∇θ = u0(x, t) prescribed(2.3b)

n · ∇φ = n · (w − u0);(2.3c)

3. outflow boundaries:

n · ∇v = 0(2.4a)

n · ∇θ = ūout(2.4b)

φ = 0.(2.4c)

Here ūout is the average outflow velocity given by conservation over the entire domain.
These boundary conditions with u = v+∇θ are equivalent to the boundary conditions
(1.2) of our problem. The Trebotich-Colella decomposition is solvable: the θ equation
is well posed without null space, and w − ∇θ has boundary conditions compatible
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with the Hodge decomposition (e.g., [5]). Therefore, v, ∇θ and ∇φ can be determined
uniquely. A projection in this framework is accomplished by

φ : ∆φ = ∇ · (w −∇θ)(2.5a)

v = (w −∇θ)−∇φ.(2.5b)

The existence of decomposition (2.1a) does not require explicit determination of
potential θ. Instead,

φ : ∆φ = ∆(φ+ θ) = ∇ ·w(2.6a)

u = w −∇φ,(2.6b)

or

u = P(w),(2.6c)

follows directly by application of (2.1b) to (2.5). The boundary conditions for projec-
tion (2.6) are

1. moving walls:

n · u = n · s(2.7a)

n · ∇φ = n · (w − s);(2.7b)

2. inflow boundaries:

n · u = u0(x, t) prescribed(2.8a)

n · ∇φ = n · (w − u0);(2.8b)

3. outflow boundaries:

n · ∇u = 0(2.9a)

φ = 0.(2.9b)

These match (1.2) on u, and for φ are identical to (2.1a).
Trebotich and Colella raise two concerns regarding the application of the Hodge

decomposition to moving domains [11, 37]. The first is over boundary conditions,
but as shown above, the existence of their velocity decomposition makes a Hodge
decomposition with boundary conditions (2.7,2.8,2.9) viable. Second, they object
to the use of a discrete projection that does not commute with the discrete PDE
operators. While it is true that these discrete operators do not commute because of
the boundary conditions on the discrete divergence, that property is not essential to
the success of the method. If we assume that the mixed derivative uxt exists and is
C0, then the differential operators ∇· and ∂/∂t commute [35] and, without recourse
to discretization, the governing PDE gives

∆P = ∇ · (ν∆u− u · ∇u)(2.10)

with boundary condition

n · ∇P = n ·
(
ν∆u− u · ∇u− ∂u

∂t

)
.(2.11)
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This assumption on uxt is required as well in the fixed-domain case (e.g., [8, Eq. (2′)]).
If

w = u∗ ≈ un + ∆t(ν∆u− u · ∇u)n+ 1
2(2.12a)

= un+1 + ∆t∇Pn+ 1
2 +O(∆t3) +O(h2)(2.12b)

(see (1.4a)), then with φ ≈ ∆tP and u = s on δΩ, the linear problems

φ : ∆φ = ∇ ·w(2.13a)

n · ∇φ = ∆tn · ∇Pn+ 1
2 on δΩn+1(2.13b)

n ·w = n · [sn+1 + ∆t∇Pn+ 1
2 ] on δΩn+1(2.13c)

and

φ : ∆φ = ∇ ·w(2.14a)

n · ∇φ = 0 on δΩn+1(2.14b)

n ·w = n · sn+1 on δΩn+1(2.14c)

are equivalent to O(∆t3) + O(h2). The former (2.13) is the physical problem to
be solved; the latter (2.14) is the Hodge decomposition we implement, and whose
existence and uniqueness is addressed above. This approach amounts to placing the
inhomogeneous boundary condition due to the moving domain in the divergence of
velocity on the right-hand side of the Poisson’s equation and solving the homogeneous
(Neumann) problem for the pressure. The same approach maps true inflow conditions
to n · w = u0 and n · ∇φ = 0. For the outflow, conditions n · ∇w = 0 and φ = 0
are literal. This discussion has used the time centering corresponding to the cell-
centered projection of outline step 6. The MAC projection (outline step 2) is entirely
analogous.

2.2. High-order Godunov advection. The computation of u
n+ 1

2

i+ 1
2ed

is based

on an adaptation of the embedded boundary method for hyperbolic PDEs [10]. It is
a three-step process:

I. In the first step, cell-centered velocities uni are averaged to edges un
i+ 1

2ed
, and

this velocity field is used to resolve Riemann problems in an advective calculation.
First, the velocity is extrapolated to faces with upwind characteristics,

u±di = uni ±
1

2
min

(
1∓ (ed · uni )

∆t

h
, 1

)
(δdu

n)i +
∆t

2
(ν∆un)i.(2.15)

This initial extrapolation does not include transverse derivatives or the pressure gra-
dient. δ is a difference operator using van Leer [40] limiting:

δd(u) =

{
δvL
d (u) if (ui+ed

− ui)(ui − ui−ed
) > 0

0 otherwise,
(2.16)

δvL
d (u) = sign(ui+ed

− ui−ed
)×(2.17)

min

(
2 |ui − ui−ed

| , 2 |ui+ed
− ui| ,

1

2
|ui+ed

− ui−ed
|
)
.

u+d
i is the value of velocity extrapolated to the right side of cell i in direction d, and

u−di+ed
is the value extrapolated to the same edge from cell i + ed. A single-valued
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result is obtained by resolving the Riemann problem, which amounts to upwinding

ū
n+ 1

2

i+ 1
2ed

=


u+d
i if (ed · u)n

i+ 1
2ed

> 0

u−di+ed
if (ed · u)n

i+ 1
2ed

< 0
1
2

(
u+d
i + u−di+ed

)
if (ed · u)n

i+ 1
2ed

= 0.

(2.18)

Fig. 2.1. Transverse flux correction in 2D. Double-valued edge states u±d are indicated by filled
circles, and single-valued states ū are indicated by open circles. Differences in ū across a given cell
provide flux correction to the states u±d associated with that cell, but in transverse directions.

The output of this Riemann problem is used to provide transverse flux corrections.
In 2D (Figure 2.1),

u±di := u±di −
∆t

2h

(
ū
n+ 1

2

i+ 1
2ed′
− ū

n+ 1
2

i− 1
2ed′

)
, d′ 6= d(2.19)

followed by another Riemann solution. In 3D the transverse flux correction is more
complicated [32].

II. A discrete MAC projection is used to make the advected velocities divergence-
free.

Φ : ∆Φ = ∇ · ū; (∇ · ū)i =
1

h

∑
d

(
ū
n+ 1

2

i+ 1
2ed
− ū

n+ 1
2

i− 1
2ed

)
(2.20a)

ed · u = ed · ū−∇dΦ.(2.20b)

This projection only affects the normal component of the edge velocities.
III. The third step repeats step I, but the velocity used to judge upwind direction

in the Riemann problem is the divergence-free edge velocity computed in step II. In
this step the normal velocity components are not changed, but the transverse ones
are. Finally, these transverse components are corrected to account for the pressure
gradient computed in II. In 2D,

ed′ · u
n+ 1

2

i+ 1
2ed

:= ed′ · u
n+ 1

2

i+ 1
2ed
− 1

4

[
(∇d′Φ)i+ 1

2ed′
+ (∇d′Φ)i+ed+ 1

2ed′
+(2.21)

(∇d′Φ)i− 1
2ed′

+ (∇d′Φ)i+ed− 1
2ed′

]
,

where d′ 6= d is the transverse direction. The generalization to 3D is straightforward.
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Fig. 2.2. Covered edge calculation, illustrated in 2D for the case of ŷ-side edges. Closed circles
indicate edge values calculated by the 1D advection algorithm described here, though modified to
use one-sided differences near boundaries. The open circle indicates an exterior covered edge, in
this case on the right side of an edge. This right-edge covered value is extrapolated from right-edge
uncovered values by interpolation (dashed line), and extrapolation in the direction of the interface
normal (arrow), using the cell-centered gradient. When the uncovered values are modified to account
for transverse flux correction, this calculation is repeated so the covered edge value also includes
transverse corrections.

The extension of this algorithm to embedded boundary geometries is described
in [10]. One change is to employ one-sided differences where the data does not sup-
port centered stencils. Another concerns the determination of so-called covered-edge
values. Covered edges are those edges of irregular cells which are not in contact with
the fluid. For these edges, the upwind characteristic tracing step provides a single
edge value on the fluid side of the edge. The value on the side opposite the fluid is
obtained by extrapolation from edge values interior to the domain (Figure 2.2); see
[10, §5.2] for details.

2.3. Hyperbolic step. We are interested here in a formulation of u · ∇u that
is consistent with the hyperbolic split of the Navier-Stokes equations

∂u

∂t
+∇ · F = 0(2.22)

with F ≡ uu, ∇ · F = u · ∇u when ∇ · u = 0. For this hyperbolic equation, one has
a discretization

un+1
nonconservative = un − ∆t

h
(DF)nc(2.23)

with DF a flux difference which we approximate by

(DF)nc
i =

D∑
d

1

h

(
u
n+ 1

2

d,i+ 1
2ed

u
n+ 1

2

i+ 1
2ed
− un+ 1

2

d,i− 1
2ed

u
n+ 1

2

i− 1
2ed

)
(2.24)

This discretization is second-order accurate in regular cells, but not consistent in cut
cells. It is stable in both cases.

A conservative discretization of the conservation law on the irregular control vol-
ume comes from the space-time integration over the fluid in an irregular cell

(2.25)
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Fig. 2.3. Centerings: centers (open circles) and centroids (crosses). In regular domains, the
discretization relies on centered quantities. A convergent stencil in irregular domains uses centroid-
centered quantities.

x

t

0 =

∫ tn+1

tn
dt

∫
Ωi(t)

dV

(
∂

∂t
,∇
)
· (u,F) ≈ κn+1

i hDun+1
i − κni hDuni +

∆thD−1
D∑
d

(αi+ 1
2ed

Fd,i+ 1
2ed
− αi− 1

2ed
Fd,i− 1

2ed
) +Ai,EBni,EB · (u,F)i,EB

where

Ωi(t) = Ω(t) ∩ [hi, h(i + 1)](2.26)

is the fluid-occupied volume of cell i at time t. Subscript EB denotes that the object
is located on the embedded boundary, and EB will be used also as an abbreviation.
Here κ denotes a volume fraction,

κni =
1

hD

∫
Ωi(tn)

dV ;(2.27)

α a space-time area fraction (aka. “aperture”),

αi− 1
2ed

=
1

hD−1∆t

∫ tn+1

tn
dt

∫
δΩi(t)∩{x|xd=hid}

dA;(2.28)

and AEB is the space-time area of the EB. nEB is the unit normal in RD+1. The
D + 1 components of AEBnEB can be determined from the condition div(ei) = 0 for
each of the D + 1 directions i, giving

κn+1
i u

cent

n+1

i
= κni u

cent

n

i
− ∆t

h

D∑
d

(αi+ 1
2ed

Fd,i+ 1
2ed
− αi− 1

2ed
Fd,i− 1

2ed
)(2.29)

−(κni − κn+1
i )ui,EB −

∆t

h

D∑
d

(αi− 1
2ed
− αi+ 1

2ed
)Fd,i,EB.

Here we have written u
cent

to emphasize that the centering is at the centroid x
cent

for

(2.29) to be consistent (Figure 2.3);

x
cent

n

i
=

1

hDκni

∫
Ωi(tn)

xdV.(2.30)
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However, the elliptic operators we use are based on a cell-centered discretization u
cc

,

which suggests the modification

u
cc

n+1

i
− u

cc

n

i
= −∆t

h
(DF)c(2.31)

(2.32)

(DF)c =
1

κn+1
i

[
h

∆t

(
κni (x

cc
− x

cent
)ni · (∇u)ni − κn+1

i (x
cc
− x

cent
)n+1
i · (∇u)ni

+(κn+1
i − κni )u

cc

n

i

)
+

D∑
d

(αi+ 1
2ed

Fd,i+ 1
2ed
− αi− 1

2ed
Fd,i− 1

2ed
)

+
h

∆t
(κni − κn+1

i )ui,EB +

D∑
d

(αi− 1
2ed
− αi+ 1

2ed
)Fd,i,EB

]
.

(2.31) has O(h) discretization error in irregular cells (when κ < 1), and is second-
order in regular cells. The velocity at the centroid of the EB is s(x, t), the prescribed
boundary condition (1.2a). Fluxes at the centroids of cell faces are calculated by
interpolating the velocity field to the centroid

x
centi− 1

2ed
=

1

hD−1∆tαi− 1
2ed

∫ tn+1

tn
dt

∫
δΩi(t)∩{x|xd=hid}

xdA(2.33a)

t
centi−

1
2ed

=
1

hD−1∆tαi− 1
2ed

∫ tn+1

tn
tdt

∫
δΩi(t)∩{x|xd=hid}

dA.(2.33b)

The data interpolated is taken from all available data in a 5D-cell region centered
at the point where F is required. This makes F on an irregular edge, say i + 1

2ed
independent of the cell, i or i + ed, that shares it. Interpolation is second order in
space and time, and implemented by solving an overdetermined set of linear equations
with Householder decomposition.

To make the method stable we employ the hybridized flux difference

un+1 = un − ∆t

h

[
κn+1(DF)c + (1− κn+1)(DF)nc

]
.(2.34)

In the limit that cells become regular on [tn, tn+1] the conservative, nonconservative,
and hybrid flux differences are all equivalent to the stable second-order result, and
(2.34) reduces to (2.31).

The generalized mass difference is redistributed. The mass excess is

(2.35)

δm = hDκn+1(un+1 − un+1
unstable) = ∆thD−1κn+1(1− κn+1) [(DF)c − (DF)nc] .

The negative of this quantity is to be distributed in a volume-weighted sense to neigh-
boring cells [3, 29, 25]. Let ũ be un+1 evaluated by (2.34), then modified by redistri-
bution. Then h(un − ũ)/∆t is what we refer to in outline step 4 as a conservation-
preserving calculation of u · ∇u.
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Fig. 2.4. Extrapolation of boundary conditions. The dashed curve is δΩn, and boundary condi-
tions are known at the centroid of EB segments in each cell. The solid curve is δΩn+1, and boundary
conditions are needed at the centroids of this EB in each cell. For each tn+1 centroid (e.g., the open
circle), the neighboring cell with the greatest boundary area is chosen. In this picture there are two
candidates (closed circles). The boundary condition is then extrapolated using the inner product of
the cell-centered gradient in the tn cell and the relative coordinates (arrow).

2.4. The time-dependent heat problem. For the problem

ut = K∆u+ f x ∈ Ω(t)(2.36a)

u(x, tn) = u0(x) x ∈ Ω(tn)(2.36b)

u(x, t) = ubc(x, t) x on δΩ(t)(2.36c)

McCorquodale et al. [24] propose the following algorithm:
1. Interpolate the boundary conditions ubc(x, tn) to the boundary δΩn+1 with

uinterp
bc (x′) = ubc(x, tn) + (x′ − x) · ∇u0(x′, tn),(2.37)

where x′ on δΩn+1, x on ∆Ωn, and |x − x′| is O(h). Specifically, let i be the cell
containing x, and let i′ be the cell containing x′. For a given i, cell i′ is chosen to be
the neighbor of i with greatest boundary area (Figure 2.4).

2. On δΩn+1, boundary conditions for any time in [tn, tn+1] are obtained by

linear interpolation of uinterp
bc (x) and ubc(x, tn+1).

3. Extrapolate u0 to Ωn+1 using the approach described in outline step 1.
4. Extrapolate f(x, tn+ 1

2 ) from Ωn+ 1
2 to Ωn+1 with this same procedure.

5. On Ωn+1, solve the heat equation by the method of Twizell et al. [38]:

un+1 = (I− µ1∆t∆h
1 )−1(I− µ2∆t∆h

2 )−1 ×(2.38) [
(I + µ3∆t∆h

3 )un,extrap + (I + µ4∆t∆h
4 )∆tfn+ 1

2 ,extrap
]
,

with µ1 = µ2 = 1 − 1/
√

2, µ3 =
√

2 − 1, and µ4 =
√

2 − 3/2. un,extrap is the field

u centered at time tn, but extrapolated from Ωn to Ωn+1, and likewise fn+ 1
2 ,extrap

is the source term f centered at tn+ 1
2 and extrapolated from Ωn+ 1

2 to Ωn+1. ∆h
1 is

the discrete Laplacian on Ωn+1 with boundary conditions at tn+1; ∆h
2 has boundary

conditions at tn+1 − µ1∆t (by interpolation); and ∆h
3 has boundary conditions at tn.

The boundary conditions on ∆h
4 are homogeneous Dirichlet.

A justification of this algorithm follows.
The ODE

u′ = A(t)u+ f(t)(2.39)
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has solution

un+1 = R(∆t)un +R(∆t)

∫ ∆t

0

R−1(s)f(s)ds(2.40)

where R is an integrating factor

R(∆t) = exp

(∫ tn+∆t

tn
A(τ)dτ

)
.(2.41)

Expanding A in a Taylor series,

A(tn + s) =

∞∑
i=0

Ais
i,(2.42)

facilitates constructing an approximation to R:

R(∆t) ≈ 1 + µ3α3∆t

(1− µ1α1∆t)(1− µ2α2∆t)
,(2.43)

where

µ1 = µ2 = 1− 1/
√

2(2.44a)

µ3 =
√

2− 1.(2.44b)

These coefficients µi minimize the discretization error of this approximation in the
case that A is independent of time: the case described by Twizell et al. [38] (Twizell et
al. introduce a factor ε of order machine precision to lift the degeneracy of (2.44a) and
enable a partial fraction representation of (2.43). McCorquodale et al. [24] include this
ε factor but do not use partial fractions). The factors αi are different time centerings
of A(t):

α1 = A0 +A1c1∆t(2.45a)

α2 = A0 +A1c2∆t(2.45b)

α3 = A0 +A1c3∆t(2.45c)

with coefficients ci to be determined. When A is time-varying, the approximation to
R(∆t) differs from (2.41) by O(∆t3) provided

(c1 + c2)(2−
√

2) + 2c3(
√

2− 1) = 1.(2.46)

The solution [24]

c1 = 1(2.47a)

c2 = 1/
√

2(2.47b)

c3 = 0(2.47c)

satisfies this consistency requirement, but not uniquely. Expanding f(t) in a Taylor
series about tn+1/2 leads to a discretization of that source term. Combined,

(2.48)

un+1 = (1− µ1α1∆t)−1(1− µ2α2∆t)−1
[
(1 + µ3α3∆t)un + (1 + µ4α4∆t)∆tfn+1/2

]
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where µ4 =
√

2− 3/2, and α4 is an arbitrary centering of A.
The choice c1 = 1 is optimal in that the final implicit solve will satisfy its given

boundary conditions exactly. An interpretation of this result is that the α3 operation
carries un to un+µ3 , then the α2 operation carries the solution to un+1−µ1 , with the
final operation α1 terminating at un+1. This suggests that 0 ≤ c3 ≤ µ3/2 in order
that µ3 ≤ c2 ≤ µ3 + µ2, i.e., that the boundary conditions lie within the interval of
the associated operation.

Connecting ODE (2.39) to the heat PDE by the method of lines, this analysis
suggests

(2.49a)

un+1 = (I− µ1L1∆t)−1(I− µ2L2∆t)−1
[
(I + µ3L3∆t)un + (I + µ4L4∆t)∆tfn+ 1

2

]
,

which we abbreviate as

un+1 = LTGA

(
un, fn+ 1

2

)
:(2.49b)

the solution at tn+1 to ut = Lu + f . When L is a negative definite operator, this
discretization is L0 stable and second-order accurate in time. Since µ1 +µ2 +µ3 = 1,
the principle of superposition requires that boundary conditions on L4 be homoge-
neous. It remains to be shown that all operators Li can be discretized on the domain
Ωn+1 to O(h2). Operators Li must be centered correctly, as given by (2.45,2.47) to
second-order in time, except for L4 which may be first-order in time.

Consider the heat equation

ut = K∆u+ f(2.50)

u(x, 0) = u0(x)

u(x, t) = ubc(x, t) on δΩ.

Let x0 be a point on δΩ, and let x1 be an arbitrary point O(h) away from x0. Then
a Taylor series expansion gives

u(x1, t) = u(x0, t) + (x1 − x0) · ∇u(x0, 0) +O(h2) +O(h∆t).(2.51)

Therefore, if Ωn+1 and Ω(t) are close (in the sense that for any point x on δΩn+1

there is a point x′ on δΩ(t) with |x−x′| = O(h)), and if one uses Dirichlet boundary
conditions on Ωn+1 given by

ubc(xn+1, t) := ubc(x(t), t) + (xn+1 − x(t)) · ∇u0,

and if ∆t ∝ h, then the solution at x(t) on δΩ(t) will be obtained to second order in
h.

The solution on the interior of a domain Ω is a linear functional of its boundary
conditions, initial conditions, and forcing. For example,

u(x, t) =

∫
Ω

dV ′G(x | x′, t)u0(x′) +(2.52) ∫ t

0

dt′
∫

Ω

dV ′G(x | x′, t− t′)f(x′, t′)∫ t

0

dt′
∫
δΩ

dS′n′ · ∇′G(x′ | x, t− t′)ubc(x′, t′)
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solves (2.50) where G is the Green’s function solving

Gt = K∆G+ δ(x− x′)(2.53)

G(x | x′, 0) = 0

G(x | x′, t) = 0 ∀ x on δΩ.

Therefore, on a domain Ω differing from Ωn+1 by O(h), where u0 and f are continued
by high-order interpolation, and where ubc is second-order accurate, the solution
interior to Ω will be second-order accurate. Solved by a discrete method, the error
will be the lower of the order of the method or h2, in the present case O(h2) +O(∆t)
for the solution by forward or backward Euler, and O(h2) +O(∆t2) embedded in the
Twizell et al. framework (2.49a).

The discretization of this heat solver is based on the conservative but unstable
discretization of the Laplacian for time-stationary geometries

∆u = ∇ · F, F = ∇u(2.54a)

un+1 = un + Li(u)(2.54b)

(2.54c)

Li(u) =
ν∆t

κih

D∑
d

([
αi+ 1

2ed
F
n+ 1

2

i+ 1
2ed
− αi− 1

2ed
F
n+ 1

2

i− 1
2ed

]
+
[
αi− 1

2ed
− αi+ 1

2ed

]
Fd,i,EB

)
.

Note that while Li is unstable in the limit κi → 0, κiLi is stable. The overall sequence
can be written in a stable manner as follows:

ψ1 = κ(I + µ4L)fn+1/2(2.55a)

ψ2 = κ(I + µ3L)un(2.55b)

ψ3 = ∆tψ1 +ψ2(2.55c)

ψ4 = [κ(I− µ2L)]
−1
ψ3(2.55d)

ψ5 = κψ4(2.55e)

un+1 = [κ(I− µ1L)]
−1
ψ5.(2.55f)

2.5. Computation of space-time geometry. We base our geometry calcula-
tion on a hierarchical application of the divergence theorem proposed by Ligocki et
al. [20], here specialized to the case where geometric information is to be determined
from cell– and time-centered discrete values of a level set function ψ. This method
assumes only that ψ is a sufficiently differentiable level set, not necessarily a distance
function.

2.5.1. Governing equations. In D dimensions use the following multiindex
convention,

xp = xp11 x
p2
2 · · ·x

pD
D(2.56a)

p! = p1!p2! · · · pD!(2.56b)

∇r =
∂r1

∂xr11

∂r2

∂xr22

· · · ∂
rD

∂xrDD
,(2.56c)

and in this application all components of a multiindex are nonnegative. We will say
multiindex integer p is even if all pi are even, and for the magnitude, P = |p| =

∑
pi,

etc.
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Consider the volume integral of∇·(xped) = pdx
p−ed with the divergence theorem:

pd

∫
V

xp−eddV =

∫
A+

d

xpdA−
∫
A−

d

xpdA+

∫
AEB

xpn · eddA(2.57)

where EB denotes the embedded boundary, and n is the unit normal vector. With the
boundary having curvature, n is spatially varying. Account for this spatial variance
with a truncated Taylor series;

pd

∫
V

xp−eddV − nd
∫
AEB

xpdA =(2.58) ∫
A+

d

xpdA−
∫
A−

d

xpdA+
∑

1≤|r|≤R

∇rnd
r!

∫
AEB

xr+pdA+O(hD+R+P ).

Here V designates a generalized “volume”, and A designates a codimension-1 subspace
– a generalized “area”. In (2.58), n is the normal to the EB in the space of volume V .
This equation expresses moments on [−h/2, h/2]D and on the codimension-1 EB in
terms of higher moments on lower dimensional spaces. Each of these lower dimensional
spaces can be analyzed with a similar specialization of (2.58). For example if the area
Ad+ is bounded by subspaces L (lines)

pd′

∫
Ad+

xp−ed′dA− nd′
∫
LEB

xpdL =(2.59) ∫
L+

d′

xpdL−
∫
L−

d′

xpdL+
∑

1≤|r|≤R

∇rnd′

r!

∫
LEB

xr+pdL+O(hD
′+R+P )

where in (2.59) n is the interface normal in the subspace Ad+ , and D′ = D − 1 if we
consider pd (the component of p in the dimension orthogonal to space Ad+) to be zero.
(This assumption can be made without loss of generality. If M(p) is a given moment
on surface Ad± with pd = 0, then M(p + ked) = (±h/2)kM(p): the generation of
moments for which pd 6= 0 is trivial.) Equation (2.58) can be applied as many times
as needed until the the subspaces contain trivial normal vectors n: when the space V
of (2.58) is 1D, the normal vector is ±1 and has no derivative.

To interpret the order D′ +R+ P , begin by specifying S as the desired order of
accuracy. On the original space R = S − 1, and P = 0, 1 is required at a minimum
to obtain the centroid of the EB. However, with R = 1 and P = 1, EB moments with
P = 2 are required on the right hand sides. This causes the maximum P , Pmax, to
depend on S and D′ in a systematic way:

Pmax(D′) = S − 1 + [D −max(D′, 2)] D ≥ 2,(2.60)

and, for each magnitude P = 0, ..., Pmax,

R = max(S − 1− P, 0).(2.61)

Table 2.1 displays some convergence results in multiple dimensions for the case S = 2.

2.5.2. Order of operations. For each dimension, the system of equations im-
plied by (2.58) is overdetermined and nonsingular. Ligocki et al. propose evaluating
this hierarchical system in a particular way, grouping equations on a common sub-
space and with common P . This makes each overdetermined set small, minimizing
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Fig. 2.5. Notation for 2D example. The fluid region abcde is denoted [··]; the EB {··}, ef ,
separates the fluid from the shaded exterior region def . The 1D subregion [+.] is the line segment

cd, etc. The calculation begins with P = 0 moments on the 1D subregions, e.g., (00)[·−] = af , then

the P = 1 moments; e.g., (10)[·−] = x2f/2− h
2/8, and (01)[·−] = −(af)h/2 which is simply (00)[·−]

multiplied by the x1 coordinate of the edge, −h/2.

a

b c

df

e
[··][-·]

[·-]

[·+]

[+·]

{·
·}

the cumulative cost of the associated linear algebra. Here, we first describe the order
of operation as described by Ligocki et al., then discuss constraints and modifications
to the operation order that are made to accommodate them.

To illustrate these ideas, consider the 2D case. Let us write as a subscript [··] to
indicate that the volume being integrated over is [−h/2, h/2]× [−h/2, h/2], and [+·]
to indicate the +x0 edge on which the integral runs [−h/2, h/2] in the x1 direction
(Figure 2.5). We will write (p0p1) to represent a given moment. Thus, (10)[·−] is the
first x moment of the bottom edge of the cell.

In support of the 2D computation, we need the P = 0 and P = 1 moments over
each edge (each of the four 1D bounding spaces). These quantities are determined by
interpolation of the discrete level set data using stencils and methods described below
(§2.5.4).

Once these 1D moments are known, one can proceed to evaluate the moments
in 2D. In volume [··] we are interested in the P = 0 moment (00)[··] which gives the
volume fraction. We are also interested in the P = 0 and P = 1 moments over the
EB, which together specify the centroid. The EB in volume [··] will be written {··}.
The first block of equations come from (2.58) with P = 1. In order, these are from
p = (1, 0) with d = 0, then d = 1, followed by p = (0, 1) with d = 0, then d = 1:

(2.62)

1(00)[··] − n0[··](10){··} = (10)[+·] − (10)[−·]

−n1[··](10){··} = (10)[·+] − (10)[·−]

−n0[··](01){··} = (01)[+·] − (01)[−·]

1(00)[··] − n1[··](01){··} = (01)[·+] − (01)[·−].

With the unknowns on the left hand side, there are 4 equations to determine 3 vari-
ables. The next set of equations come from (2.58) with P = 0, p = (0, 0), with d = 0
followed by d = 1:

(2.63)
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−n0[··](00){··} = (00)[+·] − (00)[−·] + n
(10)
0[··] (10){··} + n

(01)
0[··] (01){··}

−n1[··](00){··} = (00)[·+] − (00)[·−] + n
(10)
1[··] (10){··} + n

(01)
1[··] (01){··};

two equations in one unknown. This system requires the normal and its gradient,
which may be constructed from a degree-2 Taylor series expansion of the level set.

From these computations, volume fraction, centroids and apertures are (e.g.)

κ =
(00)[··]

h2
(2.64)

xcent
[−·] =

1

(00)[−·]

(
(10)[−·]
(01)[−·]

)
(2.65)

xcent
{··} =

1

(00){··}

(
(10){··}
(01){··}

)
(2.66)

α[−·] =
(00)[−·]

h
(2.67)

(cf. (2.27,2.33a,2.28)). While an EB area is calculated by this method, finite volume
discretizations use the projected area and the normal that come from the requirement
that ∇ · (ei) = 0 [29].

Fig. 2.6. Recentering to improve accuracy. When the 1D edges of a given volume are evaluated,
the intersections of the edges with ψ = 0 are discovered (filled circles). In the evaluation of higher-
dimensional volumes, here a 2D face, the mean of the intersection points of those edges associated
with this face gives a centering point (open circle) which approximates the centroid of the EB.

Ligocki (personal communication) noted that the quality of the least squares
solutions can be dramatically improved by recentering the calculation from the center
of a given [−h/2, h/2]D volume to a point close to the centroid of the EB. Specifically,
we recenter the linear equation systems and the constraint equations prior to solution
of the over-determined data fitting equations by Householder reduction, then recenter
the computed result to the center of the given volume. The estimated centroid is the
average of the intersections of ψ = 0 with the 1D edges of the volume being evaluated
(Figure 2.6).

2.5.3. Incorporation of constraints. The moments appearing in this expan-
sion are subject to certain inequality constraints. If p̄ is even, then the corresponding
volume integral is nonnegative and, if not on the EB, can be bounded from above:

0 ≤
∫
V

xp̄dV ≤ hP+Dp!

2P (p + 1)!
.(2.68)
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If p differs from an even multiindex p̄ by addition of a unit basis vector ej , then

min
V

(xj)

∫
V

xp̄dV ≤
∫
V

xp̄+ejdV ≤ max
V

(xj)

∫
V

xp̄dV(2.69)

by the mean value theorem.
In the second-order 2D example described above, simple positivity constraints

are

(00)[··] ≥ 0(2.70a)

(00){··} ≥ 0,(2.70b)

and there is a physical constraint

(00)[··] ≤ h2;(2.70c)

volume fraction is positive but less than or equal to one, and the EB area is positive.
Constraints of the second type are

−h
2

(00){··} ≤ (10){··} ≤ +
h

2
(00){··}(2.71a)

−h
2

(00){··} ≤ (01){··} ≤ +
h

2
(00){··}.(2.71b)

Constraints of type (2.68) can be implemented with any organization of the diver-
gence theorem hierarchy. However, to incorporate those derived from the mean value
theorem (2.69) while minimizing the overall least squares problem, it is necessary to
solve for all necessary moments of a given volume simultaneously. This can be seen
by noting that constraints (2.71) combine EB area values (00){··} and EB moment
values (10){··} and (01){··} which are determined in different blocks (2.63) and (2.62),
respectively, of the Ligocki et al. algorithm.

Incorporation of constraints in that setting means that the first linear system
is solved without constraints, then constraints may be incorporated in subsequent
solves. This would be analogous to weighing system (2.62) in preference to (2.63).
This relative priority cannot be justified. To correct this weighting problem we solve
simultaneously for all moments of a given subspace: (i) 1D moments as above, (ii)
solve system (2.62,2.63) together. We explicitly weigh each equation by h−P so that,
unconstrained, they carry similar weights as in the Ligocki et al. method.

All linear systems are solved with Householder QR reduction. The constrained
least squares problem is equivalent to the constrained positive definite quadratic pro-
gramming problem solved by Goldfarb and Idnani [12, 13]: minimize (Ax−b)T (Ax−
b) with respect to x subject to linear inequality constraints. Their method begins
with the Cholesky LLT decomposition of the Hessian ATA, and with Q unitary
the setup phase of their method is trivial: L = RT , the transpose of R from the
Householder decomposition. The quadratic form (Ax − b)T (Ax − b) never need be
explicitly constructed.

2.5.4. Stencils. Here algorithms are described that determine the moments on
1D subspaces, and derivatives of the normal vector, from cell– and time–centered level
set discretizations.

Nominally, we assume that the EB ψ = 0 will intersect each 1D edge at most
once. If this is true, then interpolated values of ψ at the corners of a cell determine
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Fig. 2.7. Stencils for the construction of 1D moments for the case where all dimensions are
spatial, illustrated in 2D for the case of order S = 3 or 4. To achieve a final order S, stencils of half
width K = dS/2e are constructed. a) To compute the moments on the left edge of the center cell
(bold line), a stencil consists of 2K points transverse to the edge, and 2K+ 1 points in the direction
of the edge (open circles). The first step is to interpolate to the line in the transverse direction.
The points being interpolated lie on the dashed lines, and the resulting interpolants are given by
crosses. The calculation of the derivatives of n for the center cell is based on a least squares fit of
all (2K + 1)D cells (the squares) to determine Taylor coefficients in a centered expansion of ψ. b)
The top 2K interpolants are interpolated to deduce the value at the top end of the bold line segment
(filled circle). The polynomial given by this filled circle and the bottom 2K crosses is identical to
the polynomial given by all crosses alone, so the top cross may be dropped when the filled circle is
added to the list of support points. Similarly, the bottom 2K points are used to interpolate the value
at the bottom of the line segment. The result is that the corner values of the cell are computed from
a symmetric (2K)D set of points, and for all cells that share a given corner the stencil is identical
(e.g., the value at the corner indicated by the filled circle is determined by the set of points in the
bold square, regardless of the edge under consideration). c) The resulting 2K+1 interpolation points
(equivalently the 2K + 1 crosses of part (a)) define an interpolation polynomial whose roots are the
intersection of ψ = 0 with the given edge.

(a) (b) (c)

Fig. 2.8. Stencils for the case where one dimension is temporal, illustrated in 1D+1D for the
case of order S = 4. Let K = dS/2e. Because data is centered at time levels, stencils for time and
space edges are different. a) To find moments on a temporal edge (bold line segment) S time levels
are interpolated (crosses) each from 2K spatial interpolations (circles on dashed lines). b) For a
spatial edge, data on a single time level is treated by the stencil described in Figure 2.7. To evaluate
derivatives of ψ at the center of a space-time volume, the stencil uses 2K + 1 points in each spatial
direction and S + 1 time levels.

x

t

n+1

n

(a)

x

t

n+1

n

(b)

which edges are intersected by the EB, which are covered (by the wall), and which
are regular. It is important to the robustness of the method that these corner values
be accurate, and that each edge’s notion of the corner be identical: the corner values
must be cell– and edge–invariant. In order that quantities like the aperture α be
invariant, it is also important that the intersection point of ψ = 0 with a given edge
be cell-invariant. These symmetry considerations impact the interpolation algorithms
by rounding up the stencil width in some cases.

To compute the moments on 1D edges, one finds the intersection of the edge with
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ψ = 0 (say a point ζ), then constructs the moments explicitly. In a frame where the
cell center is at the origin, one has

(p0p1)[−·] =

(
−h

2

)p0
×

{∫ ζ
−h/2 y

p1dy ny = −1∫ h/2
ζ

yp1dy ny = +1,
(2.72)

for example.
The intersection point ζ is determined by constructing an interpolating polyno-

mial using data interpolated to the line coincident with the edge. We seek its roots
with bisection until Smale’s criterion [34] indicates that Newton-Raphson will con-
verge quadratically. Roots are then refined with Newton-Raphson.

For the general case of arbitrary dimension D and arbitrary order S, O(hS)
accuracy on the 1-dimensional subspaces requires an interpolation polynomial with
S support points. The symmetry invariance requirement of the method modifies this
stencil. If K = dS/2e, then 2K support points are required in the transverse direction
and 2K + 1 in the normal direction (Figure 2.7).

The support requirements in the case of space-time interpolation are simpler since
data exists on the time edges so interpolation to integer time levels is not required
(Figure 2.8).

To achieve order S accuracy, S − 1 order derivatives of the normal vector are
required, which are based on S order derivatives of the discrete level set using

n(p) =
dp

dxp

∇ψ√
(∇ψ) · (∇ψ)

.(2.73)

These derivatives are based on a Taylor series centered at the center of the relevant
subspace, fit to data with stencil width S + 1. Where possible the stencil is made
symmetric by rounding up to width 2K + 1.

Fig. 2.9. Irregular cells whose interpolated corner values have uniform sign. In this example,
the cell is a square of length h and ψ = 0 is a circle centered 5 1

2
h units to the left of the cell center.

The radius is chosen so the circle intersects the left cell boundary at ±h/4. The area to be measured
is ≈ 2.08× 10−3h2.

2.5.5. Underresolved and nonconforming geometry. Underresolved ge-
ometries may fail under the standard algorithm. The geometry in Figure 2.9 will
fail because the interpolated value of ψ at the corners of the square cell are all posi-
tive. The algorithm therefore misses the fact that the EB crosses the left edge twice.
One way to detect these problems is to estimate the minimum and maximum values
of ψ on the cell. If these have different signs, then the cell is irregular even when the
corner values have uniform sign, and even if ψ is not a distance function.
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Table 2.1
Convergence of EB area for sections of a hypersphere for order S = 2. In 2D the area of

a unit circle is computed on one quadrant. In 3D, the area of a unit sphere in one octant. In
2+1D, a section of the unit sphere from the midplane to x2 = 1/16. In 3+1D, the area of a unit
hypersphere from the midplane to x3 = 1/16. Calculations used cell-centered values of the signed
distance function to derive all quantities.

2D
1/h error rate

16 -8.143e-4
32 -2.226e-4 1.87
64 -5.409e-5 2.04
128 -1.378e-5 1.97

(2+1)D
1/h error rate

16 -6.705e-5
32 -1.796e-5 1.90
64 -4.416e-6 2.02
128 -1.115e-6 1.98

3D
1/h error rate

16 -3.108e-3
32 -7.873e-4 1.98
64 -1.958e-4 2.01
128 -4.898e-5 2.00

(3+1)D
1/h error rate

16 -2.107e-4
32 -5.330e-5 1.98
64 -1.327e-5 2.01
128 -3.315e-6 2.00

Table 2.2
Relative area error (i.e., (Ah −A)/A where A is exact and Ah is computed) using one level of

bisection to resolve Fig. 2.9. Without subdivision, the relative error is 1.

order S relative error

2 -0.595
3 -0.028,1
4 -0.030,4
5 0.008,32
6 -0.000,256

An algorithm to estimate the range of values the differentiable function ψ takes
on the cell is given by Rivlin [31]. The basic idea is to sample the domain Ωi by
overlaying it with a grid of length δ. If ψ(ξ) is an extremum in cell i, and xk is a
point on the δ-grid, then

ψ(xk) = ψ(ξ) +
∑
|r|=2

(xk − ξ)r

r!
ψr(χ)(2.74a)

max
x∈Ωi

|ψ(x)− ψ(ξ)| ≤ ∆ ≡ δ2

4
max
χ

∑
|r|=2

1

r!
|ψ(r)(χ)|(2.74b)

for some χ ∈ [xk, ξ], and so

min
x∈Ωi

ψ(x) > min
xk

ψ(xk)−∆(2.75a)

max
x∈Ωi

ψ(x) < min
xk

ψ(xk) + ∆.(2.75b)
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We estimate ∆ using the Taylor series, which we center at the center of cell Ωi:

ψ(x) =
∑
P

∑
|p|=P

xp

p!
ψ(p)(0)(2.76a)

∆ =
δ2

4
max
χ

∑
|r|=2

1

r!

∣∣∣∣∣∣
∑
P

∑
|p|=P

χp−r

(p− r)!
ψ(p)(0)

∣∣∣∣∣∣(2.76b)

≤ δ2

4

∑
|r|=2

1

r!

∑
P

∑
|p|=P

( 1
2h)p−r

(p− r)!

∣∣∣ψ(p)(0)
∣∣∣(2.76c)

where h is the vector cell edge lengths. In support of (2.73), derivatives of ψ through
order S are known. So, for any order S ≥ 2 sufficient information will be available
to employ Rivlin’s method. Given a desired tolerance ∆; (i) approximate the Taylor
series by least squares, (ii) estimate δ from (2.76c), then compute the bounds by sam-
pling the polynomial. If the product of bounds ψminψmax is negative, then subdivision
is applied. Otherwise, the cell is regular κ = 1 or covered κ = 0.

For the situation in Figure 2.9, a single bisection (in all directions) permits iden-
tification of the cell as an irregular one. The resulting volume calculations are sum-
marized in Table 2.2.

3. Results. We demonstrate the method and show its convergence by computing
the flow past a sphere in a bounded domain, Figure 3.1. In arbitrary units, the
domain has length 4 and height 2. The top and bottom boundaries are stationary
no-slip walls, the right boundary is outflow, and the left domain boundary is inflow
with velocity having a Poiseuille profile with maximum velocity 1.5. Viscosity is
0.1. A sphere centered at (1, 1) obstructs the flow. Its radius depends on time as
0.2+0.1 cosωt, with ω = π/1.2. The finest discretization of the domain is 1024×512,
with ∆t = 1.5 × 10−3 fixed. To determine rates of convergence we also use coarser
grids: a 512× 256 grid with δt = 3.0× 10−3, etc., through the coarsest discretization
of 64×32 with ∆t = 2.4×10−2. The maximum CFL over the course of this simulation
is 0.8.

Errors and rates of convergence are shown in Table 3.1 after 352 time steps on the
finest grid through 22 time steps on the coarsest. In L1 the velocity is second-order
accurate, while in L∞ it is first-order. The errors reported are Richardson estimates
obtained by comparing computations with different resolution:

‖u‖h,2h1 =
1

V

∫
Ω

|uh − u2h|dV =

∑
i κi|uh − u2h|i∑

i κi
(3.1a)

‖u‖h,2h∞ = max
x∈Ω
|uh − u2h| = max

i
|uh − u2h|i.(3.1b)

In these expressions, i is a cell index in the 2h-grid, and

|uh − u2h|i =

∣∣∣∣∣∣u2h
i −

1

2D

∑
j

κhj
κ2h
i

uhj

∣∣∣∣∣∣(3.2)

with the sum being over h-grid cells j that lie in the 2h-grid cell. The convergence
rate is given by

r =
1

ln 2
ln
‖u‖2h,4h

‖u‖h,2h
.(3.3)
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Fig. 3.1. Flow past a shrinking sphere on 2:1 domain. Circles represent initial and final sphere
surface. Curves are streamlines. Color corresponds to |u| from 0 (blue) to 1.7 (red). Note that the
streamlines attach to the sphere because it is moving. Times are 0.6 and 1.2, respectively

Table 3.1
Richardson error convergence study for flow past a shrinking sphere

Nx ‖ux error‖∞ rate ‖ux error‖1 rate
64/128 5.28× 10−1 4.37× 10−3

128/256 2.24× 10−1 1.24 9.24× 10−4 2.24
256/512 8.76× 10−2 1.35 2.22× 10−4 2.06
512/1024 4.64× 10−2 0.92 5.36× 10−5 2.05

Nx ‖uy error‖∞ rate ‖uy error‖1 rate
64/128 4.01× 10−1 3.12× 10−3

128/256 1.86× 10−1 1.11 7.07× 10−4 2.14
256/512 8.28× 10−2 1.16 1.68× 10−4 2.07
512/1024 3.97× 10−2 1.06 3.95× 10−5 2.09

The first-order convergence in L∞ is expected because of the discretization error
of the quadrature formula (2.31) for the hyperbolic part of the governing equations.
As anticipated by Colella [9], the truncation error in irregularly shaped finite volumes
is lower order than regularly shaped volumes. Thus, any fully conservative and con-
sistent finite volume hyperbolic method based on a quadrature rule consisting of one
point per bounding surface will be first-order in L∞. This expectation applies also to
approaches like cell merging.
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